xarray.Dataset.pr.any#
- Dataset.pr.any(dim: str | Collection[Hashable] | ellipsis | None = None, *, keep_attrs: bool | None = None, **kwargs: Any) Self #
Reduce this Dataset’s data by applying
any
along some dimension(s).- Parameters:
- dimstr, Iterable of Hashable, “…” or None, default: None
Name of dimension[s] along which to apply
any
. For e.g.dim="x"
ordim=["x", "y"]
. If “…” or None, will reduce over all dimensions.- keep_attrsbool or None, optional
If True,
attrs
will be copied from the original object to the new one. If False, the new object will be returned without attributes.- **kwargsAny
Additional keyword arguments passed on to the appropriate array function for calculating
any
on this object’s data. These could include dask-specific kwargs likesplit_every
.
- Returns:
- reducedDataset
New Dataset with
any
applied to its data and the indicated dimension(s) removed
See also
numpy.any
dask.array.any
DataArray.any
- Aggregation
User guide on reduction or aggregation operations.
Examples
>>> da = xr.DataArray( ... np.array([True, True, True, True, True, False], dtype=bool), ... dims="time", ... coords=dict( ... time=("time", pd.date_range("2001-01-01", freq="ME", periods=6)), ... labels=("time", np.array(["a", "b", "c", "c", "b", "a"])), ... ), ... ) >>> ds = xr.Dataset(dict(da=da)) >>> ds <xarray.Dataset> Size: 78B Dimensions: (time: 6) Coordinates: * time (time) datetime64[ns] 48B 2001-01-31 2001-02-28 ... 2001-06-30 labels (time) <U1 24B 'a' 'b' 'c' 'c' 'b' 'a' Data variables: da (time) bool 6B True True True True True False
>>> ds.any() <xarray.Dataset> Size: 1B Dimensions: () Data variables: da bool 1B True